2024/01/04 03:43 12 0ooP

OOP

special methods

https://docs.python.org/3/reference/datamodel.html#special-method-names

e new
e _init_ - called after the instance has been created by new
__del__-finalizer: called when the instance is about to be destroyed.
o |t is not guaranteed that del() methods are called for objects that still exist when the
interpreter exits.
o Note: del x doesn’t directly call x.del () — the former decrements the reference count
for x by one, and the latter is only called when x’s reference count reaches zero.
__repr__ - Called by the repr () built-in function to compute the “official” string representation
of an object. This is typically used for debugging, so it is important that the representation is
information-rich and unambiguous
e str - Called by str(object) and the built-in functions format () and print() to compute

the “informal” or nicely printable string representation of an object.
e bytes
e format
elt / le / eq / ne / gt / ge
* hash
e bool

call super constructor

Alobject):
__init (self):
"world"

B(A):
~init (self):
"hello"”
super(). init

singletons
MySingleton:
instance = None
new (cls, *args, **kwargs):

isinstance(cls.instance, cls):
cls.instance = object. new (cls

niziak.spox.org - https://niziak.spox.org/wiki/

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#object.__new__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__del__
https://docs.python.org/3/reference/datamodel.html#object.__repr__
https://docs.python.org/3/reference/datamodel.html#object.__str__

Last update: 2024/01/03 11:34 programming:python:oop https://niziak.spox.org/wiki/programming:python:oop

cls.instance

Singleton(type) :

_instances
~_call (cls, *args, **kwargs):
cls cls. instances:
cls. instances/|cls super (Singleton,cls). call (*args
**kwargs

cls. instances|cls

SerialNumber(metaclass=Singleton):

attributes / properties

e attribute - direct access to data member of object
e property - properties are methods accessed like attributes. It gives full control on its getter,
setter and deleter access.

delattr(object, name) This is a relative of setattr(). The arguments are an object and a string.
The string must be the name of one of the object’s attributes. The function deletes the named
attribute, provided the object allows it. For example, delattr(x, 'foobar') is equivalent to del
x . foobar. name need not be a Python identifier (see setattr()).

Object-like attribute access for nested dictionary

e https://stackoverflow.com/questions/38034377/object-like-attribute-access-for-nested-dictionary
e https://bobbyhadz.com/blog/python-use-dot-to-access-dictionary
e https://github.com/frmdstryr/magicattr

From:
https://niziak.spox.org/wiki/ - niziak.spox.org

Permanent link:
https://niziak.spox.org/wiki/programming:python:oop

Last update: 2024/01/03 11:34

https://niziak.spox.org/wiki/ Printed on 2024/01/04 03:43

https://stackoverflow.com/questions/38034377/object-like-attribute-access-for-nested-dictionary
https://bobbyhadz.com/blog/python-use-dot-to-access-dictionary
https://github.com/frmdstryr/magicattr
https://niziak.spox.org/wiki/
https://niziak.spox.org/wiki/programming:python:oop

	OOP
	special methods
	call super constructor
	singletons
	attributes / properties
	Object-like attribute access for nested dictionary

